Nvidia Orin 配置

Orin

Posted by Seasons on July 1, 2022

配置操作系统

先为Orion装上鼠标、键盘以及DP(Display Port)接口显示器就能使用,使用DP to VGA转接头也是可以,目前测试过DP to HDMI、TypeC-TypeC方式是有问题的

安装开发环境

1. 检查内核版本:

首先检查预安装系统的内核版本,请执行以下指令:

1
$	cat /etc/nv_tegra_release

出现类似以下的信息:

1
# R34 (release), REVISION: 0.4, GCID: 30414990, BOARD: t186ref, EABI: aarch64, DATE: Tue May 17 04:20:55 UTC 2022

粗体部分显示目前内核版本为R34.0.4,不过JetPack 5.0 DP(Developer Preview)版本的内核为R34.1.x,因此需要执行以下步骤调整源的版本:

1
2
$ sudo bash -c 'echo "deb https://repo.download.nvidia.com/jetson/common r34.1 main" >> /etc/apt/sources.list.d/nvidia-l4t-apt-source.list' 
$ sudo bash -c 'echo "deb https://repo.download.nvidia.com/jetson/t234 r34.1 main" >> /etc/apt/sources.list.d/nvidia-l4t-apt-source.list'

2. 安装Jetpack开发环境:

在Orion开发套件预安装系统里内置Jetpack的安装包

1
2
3
sudo apt update 
sudo apt dist-upgrade 
sudo reboot

在这里必须执行一次重启的动作,否则会出现一些不稳定的现象。重启之后只要执行以下指令即可:

1
sudo apt install nvidia-jetpack

如果网络顺畅的话,大约1个小时时间就能全部安装完毕(不包含DeepStream),如果安装过程出现中断的话,就得重复上述指令,直到完成为止,如果持续的失败,那就建议将Orion的APT源更换成国内源。

3. 检查开发环境:这里主要检查以下项目

1
2
3
4
5
vim ~/.bashrc
export LD_LIBRARY_PATH=/usr/local/cuda-11/lib
export PATH=$PATH:/usr/local/cuda-11/bin

source ~/.bashrc

(1) CUDA

1
nvcc -V

如果出现以下信息表示正确!

1
2
3
4
5
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2021 NVIDIA Corporation
Built on Thu_Nov_11_23:44:05_PST_2021
Cuda compilation tools, release 11.4, V11.4.166
Build cuda_11.4.r11.4/compiler.30645359_0

(2) CUDNN

1
dpkg -l libcudnn8

如果出现以下信息表示正确!

1
2
3
4
5
6
	Desired=Unknown/Install/Remove/Purge/Hold
| Status=Not/Inst/Conf-files/Unpacked/halF-conf/Half-inst/trig-aWait/Trig-pend
|/ Err?=(none)/Reinst-required (Status,Err: uppercase=bad)
||/ Name           Version             Architecture Description
+++-==============-===================-============-======================
ii  libcudnn8      8.3.2.49-1+cuda11.4 arm64        cuDNN runtime libraries

(3) TensorRT

1
dpkg -l tensorrt

如果出现以下信息表示正确!

1
2
3
4
5
6
Desired=Unknown/Install/Remove/Purge/Hold
| Status=Not/Inst/Conf-files/Unpacked/halF-conf/Half-inst/trig-aWait/Trig-pend
|/ Err?=(none)/Reinst-required (Status,Err: uppercase=bad)
||/ Name           Version             Architecture Description
+++-==============-===================-============-=====================
ii  tensorrt       8.4.0.11-1+cuda11.4 arm64        Meta package of TensorRT

(4) OpenCV

1
$	dpkg -l libopencv

如果出现以下信息表示正确!

1
2
3
4
5
6
Desired=Unknown/Install/Remove/Purge/Hold
| Status=Not/Inst/Conf-files/Unpacked/halF-conf/Half-inst/trig-aWait/Trig-pend
|/ Err?=(none)/Reinst-required (Status,Err: uppercase=bad)
||/ Name           Version             Architecture Description
+++-==============-===================-============-=======================
ii  libopencv      4.5.4-8-g3e4c170df4 arm64        Open Computer Vision Library

4. 安装jtop系统监控工具

这是Jetson系列非常著名的监控工具,请执行以下指令进行安装:

1
2
3
$ sudo apt install python3-pip
$ sudo -H pip3 install -U pip
$ sudo -H pip install jetson-stats==4.0.0rc1 ### jtop github pages https://github.com/rbonghi/jetson_stats/releases/tag/3.0.0

安装DeepStream

使用DeepStream压缩包进行安装

https://developer.nvidia.com/deepstream-getting-started ,进入后会看到如下图的DeepStream SDK 6.1版本说明:

imgimg

下载“Download tar

1
2
3
4
5
6
7
8
# 安装依赖库 
$ sudo  apt  install  -y  libssl1.1  libgstreamer1.0-0  gstreamer1.0-tools 
gstreamer1.0-plugins-good  gstreamer1.0-plugins-bad  gstreamer1.0-plugins-ugly  
gstreamer1.0-libav  libgstrtspserver-1.0-0  libjansson4 libgstreamer-plugins-base1.0-dev  libgstreamer1.0-dev    libgstrtspserver-1.0-dev 
libx11-dev
# 重新安装nvidia-l4t的相关库
$ sudo  apt  install  --reinstall  -y  nvidia-l4t-gstreamer  nvidia-l4t-multimedia 
nvidia-l4t-core

现在请到前面下载的deepstream_sdk_v6.1.0_jetson.tbz2的位置,执行以下指令开始安装DeepStream开发工具:

1
2
3
$ sudo  tar  -xvf  deepstream_sdk_v6.1.0_jetson.tbz2  -C  /
$ cd  /opt/nvidia/deepstream/deepstream
$ sudo  ./install.sh  &&  sudo  ldconfig

接下来执行下面指令,检验DeepStream的安装是否成功:

1
$ deepstream-app  --version-all

第一次执行会出现一些警告(warning)信息,再执行一次就会正常出现下图信息:

imgimg

挂载硬盘

https://blog.csdn.net/enlaihe/article/details/120503019?spm=1001.2101.3001.6661.1&utm_medium=distribute.pc_relevant_t0.none-task-blog-2%7Edefault%7ECTRLIST%7ERate-1-120503019-blog-122636393.pc_relevant_multi_platform_whitelistv3&depth_1-utm_source=distribute.pc_relevant_t0.none-task-blog-2%7Edefault%7ECTRLIST%7ERate-1-120503019-blog-122636393.pc_relevant_multi_platform_whitelistv3&utm_relevant_index=1