Colorectal Polyp Classification from White light Colonoscopy Images via Domain Alignment

Paper-reading, polyp

Posted by Seasons on June 13, 2022

Title page

会议:Accepted at MICCAI-21

年份:2021

github链接(无内容)

pdf链接http://arxiv.org/abs/2108.02476

数据集链接https://drive.google.com/drive/folders/1e2t5HhQf08sTAE_CPRNVgpi6YUKgQSHn?usp=sharing

Summary

  1. 使用白光直接分类的原因
    1. the widely used colonoscopy devices only have WL and NBI modes
    2. 切换肠镜的模式时,可能遗漏掉一些息肉
    3. 缺点:白光分类的准确度低与NBI、BLI等模式下的图像
  2. teacher-student结构,直接使用白光肠镜的图像来进行息肉的光学活检分类
  3. NBI数据用于训练teacher网络并通过特征转移指导student网络
  4. 特征转移通过domain alignment对比学习实现
  5. Student网络最终能直接提取白光肠镜图像对齐后的特征
  6. 发布了第一个包含WL-NBI对的公共可用配对CPC数据集

Workflow

we adopt domain alignment to shift the distribution from WL features to NBI features during training, with the assistance of corresponding paired NBI images.

Fig. 1.

image-20220613204331361

image-20220613204432456

Methods

Domian alignment

  • DA: align feature distributions between the source and target domains.

Adversarial Learning for Domain Alignment

  1. 分别使用NBI图像和WL图像,预训练teacher和unaligned extractors,固定参数
  2. A discriminator D is introduced to align the WL features Xa with the rich NBI features Xp.
    • The discriminator is optimized to distinguish between aligned WL features Xa and NBI features Xp (i.e., NBI features are real and WL features are fake)
    • Student Extractor:生成器;D:2层卷积层和两层全连接层
    • Alignment loss La:用于对齐Xa和Xp

image-20220613204658436

Contrastive Learning

额外引入了 Contrastive Loss Lt:使得Xa与Xp尽可能一致的同时,远离Xn

We take NBI features Xp as positive samples and unaligned WL features Xn as negative samples. To optimize aligned features Xa, the Kullback-Leibler (KL) divergence is adopted to constrain the distribution distance from Xa to WL features Xn (i.e., negative samples) and NBI features Xp (i.e., positive samples) in high-level semantic space.

image-20220613204740588

Dataset setting

image-20220613205010126

Result-show

image-20220613205308316

image-20220613205337546

启发和思考

  1. 使用了domain alignment的方法,使得NBI的domain knowledge被用于基于WL的息肉分类中
  2. 不足:要获得完美的pairs难度过大,是否可能,仅基于NBI的图像,即可很好地进行领域知识的学习
  3. 对比学习的思想和GAN的思想引入,多任务学习(分类+对齐+对比loss)

代码注释

1
# 无代码