1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
| # 启动
CVAT_HOST=10.71.115.9 docker-compose -f docker-compose.yml -f docker-compose.override.yml -f docker-compose.dev.yml -f components/analytics/docker-compose.analytics.yml -f components/serverless/docker-compose.serverless.yml up -d --build
# 备份
mkdir backup
docker run --rm --name temp_backup --volumes-from cvat_db -v $(pwd)/backup:/backup ubuntu tar -cjvf /backup/cvat_db.tar.bz2 /var/lib/postgresql/data --cpu 10
docker run --rm --name temp_backup --volumes-from cvat -v $(pwd)/backup:/backup ubuntu tar -cjvf /backup/cvat_data.tar.bz2 /home/django/data --cpu 10
# [optional]
docker run --rm --name temp_backup --volumes-from cvat_elasticsearch -v $(pwd)/backup:/backup ubuntu tar -cjvf /backup/cvat_events.tar.bz2 /usr/share/elasticsearch/data
#恢复备份
cd <path_to_backup_folder>
docker run --rm --name temp_backup --volumes-from cvat_db -v $(pwd):/backup ubuntu bash -c "cd /var/lib/postgresql/data && tar -xvf /backup/cvat_db.tar.bz2 --strip 4"
docker run --rm --name temp_backup --volumes-from cvat -v $(pwd):/backup ubuntu bash -c "cd /home/django/data && tar -xvf /backup/cvat_data.tar.bz2 --strip 3"
# [optional]
docker run --rm --name temp_backup --volumes-from cvat_elasticsearch -v $(pwd):/backup ubuntu bash -c "cd /usr/share/elasticsearch/data && tar -xvf /backup/cvat_events.tar.bz2 --strip 4"
# command line
python3 cli.py --server-host=10.71.115.8 --auth admin:admin dump --format "CVAT for images 1.1" 103 output.xml
# function yaml
triggers:
myHttpTrigger:
maxWorkers: 2
kind: 'http'
workerAvailabilityTimeoutMilliseconds: 10000
attributes:
maxRequestBodySize: 33554432 # 32MB
port: 49164
ingresses:
"49164":
paths:
- /
host: 172.17.0.4
# 记得开启对应端口的iptables
sudo iptables -A INPUT -p tcp -m tcp --dport 9091 -j ACCEPT
sudo iptables-save
# 部署自动化服务
nuctl deploy --project-name cvat \
--path serverless/openvino/dextr/nuclio \
--volume `pwd`/serverless/common:/opt/nuclio/common \
--platform local
nuctl deploy --project-name cvat \
--path serverless/pytorch/seasons/PETNet/nuclio \
--platform local --base-image ubuntu:18.04 \
--desc "GPU based implementation of PETNet for polyp segmentation." \
--image cvat/PETNet\
--triggers '{"myHttpTrigger": {"maxWorkers": 2}}' \
--resource-limit nvidia.com/gpu=1
|